The proposition $\left( { \sim p} \right) \vee \left( {p\, \wedge \sim q} \right)$
$p \wedge \left( { \sim q} \right)$
$p \to \sim q$
$q \to p$
$p \vee \left( { \sim q} \right)$
The Boolean expression $(\mathrm{p} \wedge \mathrm{q}) \Rightarrow((\mathrm{r} \wedge \mathrm{q}) \wedge \mathrm{p})$ is equivalent to :
Among the statements
$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology
$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction
Let $p$ and $q$ be two Statements. Amongst the following, the Statement that is equivalent to $p \to q$ is
The negation of the statement $q \wedge \left( { \sim p \vee \sim r} \right)$
If $p$ : It rains today, $q$ : I go to school, $r$ : I shall meet any friends and $s$ : I shall go for a movie, then which of the following is the proposition : If it does not rain or if I do not go to school, then I shall meet my friend and go for a movie.